FORMULA CONVERSION⁸

Here $\alpha = 10^2 \,\mathrm{cm}\,\mathrm{m}^{-1}$, $\beta = 10^7 \,\mathrm{erg}\,\mathrm{J}^{-1}$, $\epsilon_0 = 8.8542 \times 10^{-12} \,\mathrm{F}\,\mathrm{m}^{-1}$, $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H}\,\mathrm{m}^{-1}$, $c = (\epsilon_0 \mu_0)^{-1/2} = 2.9979 \times 10^8 \,\mathrm{m}\,\mathrm{s}^{-1}$, and $\hbar = 1.0546 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$. To derive a dimensionally correct SI formula from one expressed in Gaussian units, substitute for each quantity according to $\bar{Q} = \bar{k}Q$, where \bar{k} is the coefficient in the second column of the table corresponding to Q (overbars denote variables expressed in Gaussian units). Thus, the formula $\bar{a}_0 = \bar{\hbar}^2/\bar{m}\bar{e}^2$ for the Bohr radius becomes $\alpha a_0 = (\hbar\beta)^2/[(m\beta/\alpha^2)(e^2\alpha\beta/4\pi\epsilon_0)]$, or $a_0 = \epsilon_0 h^2/\pi m e^2$. To go from SI to natural units in which $\hbar = c = 1$ (distinguished by a circumflex), use $Q = \hat{k}^{-1}\hat{Q}$, where \hat{k} is the coefficient corresponding to Q in the third column. Thus $\hat{a}_0 = 4\pi\epsilon_0 \hbar^2/[(\hat{m}\hbar/c)(\hat{e}^2\epsilon_0\hbar c)] = 4\pi/\hat{m}\hat{e}^2$. (In transforming from SI units, do not substitute for ϵ_0 , μ_0 , or c.)

Physical Quantity	Gaussian Units to SI	Natural Units to SI
Capacitance	$\alpha/4\pi\epsilon_0$	ϵ_0^{-1}
Charge	$(\alpha \beta/4\pi \epsilon_0)^{1/2}$	$(\epsilon_0 \hbar c)^{-1/2}$
Charge density	$(\beta/4\pi\alpha^5\epsilon_0)^{1/2}$	$(\epsilon_0 \hbar c)^{-1/2}$
Current	$(\alpha\beta/4\pi\epsilon_0)^{1/2}$	$(\mu_0/\hbar c)^{1/2}$
Current density	$(\beta/4\pi\alpha^3\epsilon_0)^{1/2}$	$(\mu_0/\hbar c)^{1/2}$
Electric field	$(4\pi\beta\epsilon_0/\alpha^3)^{1/2}$	$(\epsilon_0/\hbar c)^{1/2}$
Electric potential	$(4\pi\beta\epsilon_0/\alpha)^{1/2}$	$(\epsilon_0/\hbar c)^{1/2}$
Electric conductivity	$(4\pi\epsilon_0)^{-1}$	ϵ_0^{-1}
Energy	$oldsymbol{eta}$	$(\hbar c)^{-1}$
Energy density	$eta/lpha^3$	$(\hbar c)^{-1}$
Force	β/α	$(\hbar c)^{-1}$
Frequency	1	c^{-1}
Inductance	$4\pi\epsilon_0/\alpha$	μ_0^{-1}
Length	lpha	1
Magnetic induction	$(4\pi\beta/\alpha^3\mu_0)^{1/2}$	$(\mu_0 \hbar c)^{-1/2}$
Magnetic intensity	$(4\pi\mu_0\beta/\alpha^3)^{1/2}$	$(\mu_0/\hbar c)^{1/2}$
Mass	$eta/lpha^2$	c/\hbar
Momentum	eta/lpha	\hbar^{-1}
Power	eta	$(\hbar c^2)^{-1}$
Pressure	β/α^3	$(\hbar c)^{-1}$
Resistance	$4\pi\epsilon_0/\alpha$	$(\epsilon_0/\mu_0)^{1/2}$
Time	1	c
Velocity	α	c^{-1}